Developed and Advanced Theoretical Methods in learning Numerical Systems and Mathematics – Japanese Language Presentation– (日本語)

Research commenced: 2019
Expected year of completion: 2025


前提条件となる高レベルの数学スキルを達成するための、前提条件となる数値システムおよび高度な手続き学習コースを研究および開発しました。
A researched and developed prerequisite Numerical System and Advanced Procedural Learning course for people to achieve prerequisite high level Mathematics skills

Includes full audio presentation below


An independent Research and Development program by ΑTHANASIOS KOKONTIS
Kokontis completed a three year research & development program to develop an Advanced Numerical System based on standardised Learning Procedures- resulting in a conditional curriculum process to achieve proficiency in numerical systems and advanced mathematics for any individual.Kokontis は、標準化された学習手順に基づいた高度な数値システムを開発するための 3 年間の研究開発プログラムを完了しました。その結果、あらゆる個人が数値システムと高度な数学の習熟度を達成するための条件付きカリキュラム プロセスが実現しました。
The current assumption is that there is a 30% percent chance of success rate in an individual achieving prerequisite high level mathematics skills to enter University or College or advanced mathematics dependent careers.現在の仮定では、大学やカレッジ、または高度な数学に依存するキャリアに入学するために必要な高レベルの数学スキルを達成する個人の成功率は 30% であると考えられています。
Athanasios Kokontis has confirmed – by developing this advanced Numerical System curriculum and applied Learning Procedures an individuals success rate increases to 80% percent – the remainder 20% is the individuals commitment.Athanasios Kokontis – アタナシオス・ココンティス氏は、この高度な数値体系カリキュラムを開発し、学習手順を適用することによって、個人の成功率が 80% に増加し、残りの 20% は個人の努力であることを確認しました。

The case for the low 30% success rate leads to assumptions about current occupations who require proficiency in Numerical Systems and Advanced Mathematics 成功率が 30% と低いという仮定に基づいて、人々の数値体系と高度な数学における職業習熟度を確認するという要件を Kokontis に提供します。
Based on the assumption that current Arithmetic Theory, Number Systems and Mathematics curriculum is incorrect, Athanasios Kokontis estimates 50 percent of professionals and individuals in a number or mathematics dependent occupation will highly likely have a low score of proficiency in numerical systems and mathematics, and thus must conduct tasks with the use of computation equipment ( excel, software, online mathematics calculators and calculator equipment).現在の算術理論、数体系、および数学のカリキュラムが間違っているという前提に基づいて、アタナシオス・ココンティス氏は、数または数学に依存する職業に就いている専門家および個人の 50 パーセントは、数値体系および数学の習熟度スコアが低い可能性が高いと推定しています。 したがって、計算機器を使用してタスクを実行する必要があります- ( Excel、ソフトウェア、オンライン数学計算機および計算機器。
This estimate is based on the estimated low success rate of 30% for an individual to achieve proficiency in advanced mathematics and the incorrect curriculum education methodology used today.この推定は、高度な数学の習熟に達する個人の成功率が 30% という低い推定値と、今日使用されている誤ったカリキュラム教育方法論に基づいています。
On this basis, the case can be made for people currently employed in a number and mathematics dependent occupation – will likely have an approximate 50 percent proficiency score in numeracy and mathematics.この調査結果によると、現在数字と数学に依存する職業に就いている人々は、おそらく算数と数学の習熟度が約 50% であると考えられます。
This consideration requires us to promote the Developed and Advanced Theoretical Methods in Learning Numerical Systems and Mathematics program to individuals and professionals who depend on number systems and mathematics for their occupation.上記の調査結果により、Kokontis は、数体系と数学に依存する個人および専門家に対して、数値体系と数学の学習における開発された高度な理論的方法プログラムを促進する必要があることを特定しました。

私たちが達成を目標としている 80% の熟練度成功率は、次の方法とパラメータに基づいています。

The 80 percent proficiency success rate we aim to achieve is based on the following methods and objectives:

1) a well-researched and developed prerequisite numerical education system – which is a developed procedural learning method and process.1) よく研究され、開発された前提条件となる数値教育システム。これは、開発された手続き型学習方法およびプロセスです。
2) the primary objective the developed education system must achieve is the 80 percent success rate in a student achieving proficiency or advanced mathematics skills2) 最初で最も重要な目標 – 開発された教育システムが達成しなければならないのは、生徒が熟練または高度な数学スキルを達成する成功率 80% です。
3) defined preconditions that will increase the probability of achieving the 80 percent success rate3) 80% の成功率を達成する確率を高める定義されたパラメーター
4) the methodology will incorporate some understanding of human Cognitive Reasoning Function development methods4) この方法論には、人間の認知推論機能の方法に関する理解が組み込まれています。
In effect, it is a standardised procedural learning and education system for curriculum in numerical systems and mathematics education.事実上、これは数値システムおよび数学教育のカリキュラムのための標準化された手順学習および教育システムです。

The first component – reconstructs the current system of numbers and numerical systems, to better translate to the student or individual the correct interpretation of the numerical system in use today,最初のコンポーネント – 現在使用されている数値体系の正しい解釈を生徒や個人にわかりやすく伝えるために、現在の数値体系と数値体系を再構築します。
And the second component – applies the developed methodology of procedures and applied properties to number systems and mathematics topics.そして 2 番目のコンポーネントは、開発された手続きの方法論と適用されたプロパティを数体系と数学のトピックに適用します。
This procedural approach to numerical and mathematics education and training is innovative and advanced work by Athanasios Kokontis and is not based on current conventional curriculum or current textbooks used in Arithmetic Theory and Mathematics education today.数値および数学の教育と訓練に対するこの手順的なアプローチは、Athanasios Kokontis による革新的かつ高度な研究です。

現在の算術理論および数学教育カリキュラムで現在使用されている従来のカリキュラムや現行の教科書とは比較できません。

数値システム手順を開発するための手順学習プログラムの前提条件と定義された目的:

The preconditions and defined objectives of the procedural learning program for developing Numerical System procedures:

研究の過程で、アタナシオス・ココンティスは、このプロジェクトは、数学のトピックに適用される数値体系と数理論を学習するための方法とカリキュラムを修正し、開発するために必要な、一連の前提条件と定義された目的によって方向付けられるという決定を下しました。 80%の成功率を満たすために。


A) increasing an individuals capabilities in order to reach the proficiency required to achieve an comprehensive understanding of all mathematics topics;A) すべての数学トピックの包括的な理解を達成するために必要な習熟度に到達するために、個人の能力を向上させること。
by way ofによる
B) developing a comprehensive procedural numerical system and number theory course used in the field of numbers, mathematics and metrics today;B) 数値と数学の分野における包括的な手続き型数値システムと数論コースを開発する
andそして
C) the developed system will be applied to all mathematics topics to prove its corrected approach to mathematics;C) 開発されたシステムは、数学への正しいアプローチを証明するために、すべての数学トピックに適用されます。
andそして
D) the system and curriculum must be developed as a procedural learning and standardised theoretical learning approach in Mathematics curriculum;D) システムとカリキュラムは、数学カリキュラムにおける手順学習および標準化された理論学習アプローチとして開発されなければなりません。
in order to achieve達成するために
E) proficiency in high level Mathematics, with a minimum 80% percent success rate for any individual who completes the course;E) コースを完了した個人の成功率が少なくとも 80% である、高レベルの数学の習熟度。
and the completion of the course will result inそして – このコースを無事に完了すると、
F) retention of the knowledge obtained by any individual, with the requirement for only revision to recommence studies or the use of the acquired new numerical and mathematics skills;F) 知識の保持は個人によって得られます。

コースを要約することだけが、学習を再開するため、
または獲得した新しい数値および数学のスキルを使用するための唯一の要件となります。
and with successful retention of the knowledge by individuals個人が得た知識の保持に成功することで、
G) this would be confirmed as the correct curriculum procedure of obtaining the proficiency skill level requirements and learning of numerical systems, number theory and all mathematics subjects.G) これは、熟練スキルレベル要件を取得し、数値体系、数論、およびすべての数学科目を学習するための正しいカリキュラム手順であることが確認されます。

The following are some brief comments about the identified and probable Cognitive Function benefits for the human who completes or learns an comprehensive procedural numerical education system as this one developed by Athanasios Kokontis.

Ιt was determined halfway year two in the project 2020 but this procedural education system may have a Cognitive Reasoning benefit for people with low IQ because or disability.2020 年のプロジェクトの 2 年目の途中で決定されましたが、この手続き型教育システムは、障害や障害のために IQ が低い人々にとって認知推論の利点がある可能性があります。
What was strategised and envisioned in the second year of the research project was to reconstruct human procedural learning processing and thought processes for learning and using number systems, with consideration to Human Cognitive functions.研究プロジェクトの2年目に計画され構想されたのは、人間の認知機能を考慮して、数体系を学習および使用するための人間の手続き的学習処理と思考プロセスを再構築することでした。
This assumption and strategy opened an future applicable science to Cognitive Reasoning development made possible by a perfect procedural process – and the assumption was that standardised procedures will allow the numerical system to be  learned with minimal difficulty by the human or the individual – and if this was true, then the procedural system would be correctこの仮定と戦略は、完璧な手順プロセスによって可能になる認知推論の開発に将来適用可能な科学を切り開きました。そしてその仮定は、標準化された手順により、人間または個人による最小限の困難で数値システムを学習できるようにするというものでした。

– そして、これが本当であれば、手続きシステムは正しいことになります。
The current education methodology used in education today as discussed above, comprises a brief introduction to Arithmetic Theory and then immediately jumping between topics of numbers and formulas and equations contained in mathematical topics which results in the low estimated 30 percent success rate.上で説明したように、今日の教育で使用されている現在の教育方法論は、算術理論への簡単な導入と、その後すぐに数学のトピックに含まれる数値、公式、方程式のトピックの間を飛び越える構成になっており、その結果、成功率は 30% と低く見積もられています。
Without procedures in place, and the attempt to learn a volume of knowledge that’s not organised and not procedural-手順が整備されておらず、整理されておらず、手順に沿っていない大量の知識を学ぼうとする試み –
the Human Brain cognitively is not be able to comprehend such variation in complex numerical and mathematics topics,  but if you give the brain of the human procedures and a foundation of procedures it then automatically will achieve the understanding of the volume of knowledge of topic, for example人間の脳は、複雑な数値や数学のトピックにおけるそのような変化を認知的に理解することはできませんが、人間の脳に手順と手順の基礎を与えると、自動的にトピックの知識量の理解を達成します。
 like counting one to ten, this is a sequential standardised procedure in counting quantities, which we can confirm children can learn and people with lower IQs and disability are currently achieving. This understanding and fact also confirms that a procedure of learning mathematics will result in a higher success rate.例えば

1 から 10 まで数えるのと同じように、これは数量を数える一連の標準化された手順であり、子供たちが学習できることが確認できます。また、IQ が低い人や障害のある人でも、現在この自然な数え方を達成していることが確認できます。

この理解と事実は、数学を学習する手順がより高い成功率をもたらすことも裏付けています。

Cognitive Reasoning Development to be Achieved

The byproduct of this methodological process of learning this numerical system – is that it has a cognitive functionality approach and neuro learning biological consideration when it was being developed – with the primary reason and objective to increase the probability of learning success for the individual, and the perpetual retention of the skills and knowledge acquired.

In the future – we will invest in further research and development with the objective of confirming that this numerical system methodological approach results in biological cognitive improvement for an individual with a lower possibility of success, disability or below average IQ.

We are excited about this next endeavor.

Learn more about this research and development initiative: https://kokontis.wordpress.com/research/

Statistics Sampling and Surveys

We will be running a statistics sampling project, both quantitative and qualitative to continue to confirm the success rate.



Audio Presentation: Developed and Advanced Theoretical Methods in learning Numerical Systems and Mathematics

English Language Audio Presentation

An audio introduction by Athanasios Kokontis to the developed prerequisite course and curriculum program – Developed and Advanced Theoretical Methods in learning Numerical Systems and Mathematics 



Students and Professionals Participating in New Technologies and Sciences

In this current Fourth Industrial Revolution of the information, communications and digital economy – in order to increase the prospects and chance of success and for all age groups to achieve science qualifications and advanced mathematic dependent careers it was found that it would be a priority to improve and develop correct methodologies for teaching the curriculum of Numerical Systems, Number Systems and subsequently apply these developed methodologies to Mathematics topics.

Athanasios Kokontis estimated – through personal curriculum experience and theoretical mathematics curriculum whilst at University – at its present form of curriculum course learning methodology and theoretical structure there is a 30% percent chance of success rate in an individual achieving prerequisite high level mathematics skills to enter University or College or advanced mathematics dependent careers.

Athanasios Kokontis in the second year – of this research and development project, in 2020, had confirmed estimation and findings – that this advanced Numerical System curriculum and the applied Learning Procedures increases the success rate of achieving a high level skill of mathematics to 80% percent – the remainder 20% is commitment from the individual to the course for a period of 12 months.


Science and Engineering Careers as an Achievable Option

The correct procedural learning and methods in numerical systems developed by Athanasios Kokontis would ensure students and professionals successful learning and adoption of the subjects required in academics of Arithmetic Theory, Number Theory, Geometry and Spacial Theory and Mathematics topics – thus increasing the people available to move into science, engineering and advanced mathematics dependent careers.

The research and development of the methodologies which comprise the new curriculum program is now completed – after three years of work by Athanasios Kokontis.

The Academic Curriculum

In the near future this will be published in a five volume mathematics course with the objective of the volumes being implemented as a pre-requisite course to commencing Arithmetic Theory and Mathematics topics in Secondary School, College and University courses.


Quantitative, Qualitative Curriculum, and Technological Challenges for Higher Education

Athanasios Kokontis looked at research studies which identified the most prominent quantitative, qualitative curriculum, and technological challenges facing the higher education system across the developed and developing world with regards to the information and communications technological advancements that had a significant contribution to changing the knowledge of science and knowledge in various fields of higher education.

The most compelling papers illustrate and confirm todays human societies require the adoption of scientific research and its fundamentals as an clear entrance aimed at serving the community and upskilling people skills to meet todays technological advancements and the conditional skill requirements of the new digital industrial equipment, electronic transaction and ecommerce systems, information and communication technology companies skilled staffing requirements.

It is noted that the number of private and public universities has increased, and many students have been accepted for all levels of study in the bachelor’s, higher diploma, master’s and doctoral programs, and the quantitative growth has been accompanied by many negatives, which requires renewal and development in the field of higher education, this led to new challenges, and the qualitative challenge in terms of curriculum relevance, an quality importance requirement for the improvement of teaching, scientific research and education services are required to meet the social demand for higher education, in order to reach the quality of this information and communications age.

The real challenge presenting all countries today is the need to enter the civilisation of advanced technology, which has become the main factor and the starting point for preparing staff capable of accomplishing this upskilling and creating an appropriate educational environment for the student to help him to use the sources of knowledge.

The Numerical and Procedural System in Mathematics developed by Athanasios Kokontis addresses the core prerequisite mathematics requirement in to such technologies and thus with this developed curriculum provide a set of recommendations and proposals that may contribute to addressing challenges and contributing to improving educational outcomes in light of the requirements of the labor market and the needs of society.

By Athanasios Kokontis – Sydney, Australia – © 2019 – 2023 Athanasios Kokontis All Copyrights Reserved