Research commenced: 2019
Expected year of completion: 2025
Métodos Teóricos Desarrollados y Avanzados en el Aprendizaje de Sistemas Numéricos y Matemáticas – Presentación en Idioma Español – (Español)
| Owner, researcher and producer of Kokontis products, education and training programs in Number Theory, Numerical Systems and Applied Mathematics: | Athanasios Kokontis |
| Trademark and Copyright owner: | ATHANASIOS KOKONTIS |
| Proprietary owner: | ATHANASIOS KOKONTIS KOKONTIS A.B,N 37 886 734500 |
| LinkedIn Professional Account | LinkedIn Professionals – Account URL: https://www.linkedin.com/in/athanasios-kokontis-47a63923/ |
| ResearchGate ResearchGate DOI: | URL: https://www.researchgate.net/profile/Athanasios-Kokontis 10.13140/RG.2.2.17274.91843 |
| Contact Telephone: | Australia (+61) 0455 167 018 |
| Email address: | athanasios.kokontis@kokontis.com.au |
| Paper Topics Un curso de sistema numérico y aprendizaje de procedimientos avanzados que es un requisito previo investigado y desarrollado para que las personas alcancen habilidades matemáticas de alto nivel como requisito previo > | El caso de competencia para profesionales, profesionales y académicos actuales > | La tasa de éxito del 80 por ciento de competencia que se debe lograr se basa en los siguientes métodos y objetivos: | Las condiciones previas y los objetivos definidos del programa de aprendizaje procedimental para el desarrollo de procedimientos del Sistema Numérico: > | Presentación en Audio: Métodos Teóricos Desarrollados y Avanzados en el aprendizaje de Sistemas Numéricos y Matemáticas > | Las carreras de ciencias e ingeniería como una opción alcanzable | Programas e iniciativas de investigación y desarrollo – 2023 – 2025 | Currículo Cuantitativo, Cualitativo y Desafíos Tecnológicos para la Educación Superior > |
| A researched and developed prerequisite Numerical System and Advanced Procedural Learning course for people to achieve prerequisite high level Mathematics skills > | The Proficiency case for Current Practitioners, Professionals and Academia > | The 80 percent proficiency success rate to be achieved is based on the following methods and objectives: | The preconditions and defined objectives of the procedural learning program for developing Numerical System procedures: > | Audio Presentation: Developed and Advanced Theoretical Methods in learning Numerical Systems and Mathematics > | Science and Engineering Careers as an Achievable Option | Research and Development Programs and Initiatives – 2023 – 2025 | Quantitative, Qualitative Curriculum, and Technological Challenges for Higher Education > |

Un curso de aprendizaje de procedimientos avanzado y sistema numérico de requisitos previos investigado y desarrollado para que las personas alcancen habilidades matemáticas de alto nivel como requisitos previos.
A researched and developed prerequisite Numerical System and Advanced Procedural Learning course for people to achieve prerequisite high level Mathematics skills
Includes full audio presentation below

Un programa independiente de Investigación y Desarrollo de ΑTHANASIOS KOKONTIS
An independent Research and Development program by ΑTHANASIOS KOKONTIS
Kokontis completed a three year research & development program to develop an Advanced Numerical System based on standardised Learning Procedures- resulting in a conditional curriculum process to achieve proficiency in numerical systems and advanced mathematics for any individual.
The current assumption is that there is a 30% percent chance of success rate in an individual achieving prerequisite high level mathematics skills to enter University or College or advanced mathematics dependent careers.
Athanasios Kokontis has confirmed – by developing this advanced Numerical System curriculum and applied Learning Procedures an individuals success rate increases to 80% percent – the remainder 20% is the individuals commitment.
The Proficiency case for Current Practitioners, Professionals and Academia
The case for the low 30% success rate leads to assumptions about current occupations who require proficiency in Numerical Systems and Advanced Mathematics
Based on the assumption that current Arithmetic Theory, Number Systems and Mathematics curriculum is incorrect, Athanasios Kokontis estimates 50 percent of professionals and individuals in a number or mathematics dependent occupation will highly likely have a low score of proficiency in numerical systems and mathematics, and thus must conduct tasks with the use of computation equipment ( excel, software, online mathematics calculators and calculator equipment.
This estimate is based on the estimated low success rate of 30% for an individual to achieve proficiency in advanced mathematics and the incorrect curriculum education methodology used today.
On this basis, the case can be made for people currently employed in a number and mathematics dependent occupation – will likely have an approximate 50 percent proficiency score in numeracy and mathematics.
This consideration requires us to promote the Developed and Advanced Theoretical Methods in Learning Numerical Systems and Mathematics program to individuals and professionals who depend on number systems and mathematics for their occupation.
Kokontis completó un programa de investigación y desarrollo de tres años para desarrollar un sistema numérico avanzado basado en procedimientos de aprendizaje estandarizados, lo que resultó en un proceso curricular condicional para lograr el dominio de sistemas numéricos y matemáticas avanzadas para cualquier individuo.
La suposición actual es que existe una probabilidad de éxito del 30% en que un individuo alcance las habilidades matemáticas de alto nivel necesarias para ingresar a la universidad o la facultad o a carreras avanzadas que dependen de las matemáticas.
Athanasios Kokontis ha confirmado que, al desarrollar este plan de estudios avanzado de Sistema Numérico y procedimientos de aprendizaje aplicados, la tasa de éxito de los individuos aumenta al 80%, el 20% restante es el compromiso del individuo.
El Caso De Competencia Para los Profesionales, Profesionales Y Académicos Actuales
El argumento a favor de la baja tasa de éxito del 30 % lleva a suposiciones sobre las ocupaciones actuales que requieren competencia en sistemas numéricos y matemáticas avanzadas.
Basado en el supuesto de que el plan de estudios actual de Teoría Aritmética, Sistemas Numéricos y Matemáticas es incorrecto, Athanasios Kokontis estima que el 50 por ciento de los profesionales e individuos en una ocupación dependiente de los números o las matemáticas probablemente tendrán un puntaje bajo de competencia en sistemas numéricos y matemáticas y, por lo tanto, debe realizar tareas con el uso de equipos de cómputo (excel, software, calculadoras matemáticas en línea y equipos de cálculo).
Esta estimación se basa en la baja tasa de éxito estimada del 30% para que un individuo alcance el dominio de las matemáticas avanzadas y la metodología educativa curricular incorrecta que se utiliza en la actualidad.
Sobre esta base, se puede argumentar que las personas actualmente empleadas en una ocupación dependiente de los números y las matemáticas probablemente tendrán un puntaje de competencia aproximado del 50 por ciento en aritmética y matemáticas.
Esta consideración requiere que promovamos el programa de Métodos Teóricos Desarrollados y Avanzados en el Aprendizaje de Sistemas Numéricos y Matemáticas entre personas y profesionales que dependen de los sistemas numéricos y las matemáticas para su ocupación.
La tasa de éxito del 80 por ciento de competencia que se debe lograr se basa en los siguientes métodos y objetivos:
The 80 percent proficiency success rate to be achieved is based on the following methods and objectives:
1) a well-researched and developed prerequisite numerical education system – which is a developed procedural learning method and process.
2) the primary objective the developed education system must achieve is the 80 percent success rate in a student achieving proficiency or advanced mathematics skills
3) defined preconditions that will increase the probability of achieving the 80 percent success rate
4) the methodology will incorporate some understanding of human Cognitive Reasoning Function development methods
In effect, it is a standardised procedural learning and education system for curriculum in numerical systems and mathematics education.
The education program comprises two key components :
The first component – reconstructs the current system of numbers and numerical systems, to better translate to the student or individual the correct interpretation of the numerical system in use today,
And the second component – applies the developed methodology of procedures and applied properties to number systems and mathematics topics.
This procedural approach to numerical and mathematics education and training is innovative and advanced work by Athanasios Kokontis and is not based on current conventional curriculum or current textbooks used in Arithmetic Theory and Mathematics education today.
1) un sistema de educación numérica de requisitos previos bien investigado y desarrollado, que es un método y proceso de aprendizaje procedimental desarrollado.
2) el objetivo principal que debe alcanzar el sistema educativo desarrollado es la tasa de éxito del 80 por ciento en que un estudiante alcance competencia o habilidades matemáticas avanzadas
3) condiciones previas definidas que aumentarán la probabilidad de lograr la tasa de éxito del 80 por ciento
4) la metodología incorporará cierta comprensión de los métodos de desarrollo de la función de razonamiento cognitivo humano
En efecto, es un sistema educativo y de aprendizaje procedimental estandarizado para el currículo en sistemas numéricos y educación matemática.
El programa educativo comprende dos componentes clave:
El primer componente: reconstruye el sistema actual de números y sistemas numéricos, para traducir mejor al estudiante o individuo la interpretación correcta del sistema numérico que se utiliza hoy en día.
Y el segundo componente: aplica la metodología desarrollada de procedimientos y propiedades aplicadas a sistemas numéricos y temas matemáticos.
Este enfoque procedimental para la educación y la formación numérica y matemática es un trabajo innovador y avanzado de Athanasios Kokontis y no se basa en el plan de estudios convencional actual ni en los libros de texto actuales que se utilizan en la educación de teoría aritmética y matemáticas en la actualidad.
Las condiciones previas y objetivos definidos del programa de aprendizaje procedimental para el desarrollo de procedimientos del Sistema Numérico:
The preconditions and defined objectives of the procedural learning program for developing Numerical System procedures:
Athanasios Kokontis determinó que este proyecto estaría dirigido por un conjunto de condiciones previas y objetivos definidos que serían necesarios para corregir y desarrollar los métodos y el plan de estudios para el aprendizaje de sistemas numéricos y teorías de números que se aplican a temas matemáticos para cumplir con los requisitos. Tasa de éxito del 80%.
It was determined by Athanasios Kokontis that this project would be directed by a set of preconditions and defined objectives that would be required to correct and develop the methods and curriculum for learning numerical systems and number theories which are applied to mathematics topics in order to meet the 80% success rate.
Las condiciones previas y los objetivos prescritos son los siguientes:
The following are the prescribed preconditions and objectives:
A) increasing an individuals capabilities in order to reach the proficiency required to achieve an comprehensive understanding of all mathematics topics;
by way of
B) developing a comprehensive procedural numerical system and number theory course used in the field of numbers, mathematics and metrics today;
and
C) the developed system will be applied to all mathematics topics to prove its corrected approach to mathematics;
and
D) the system and curriculum must be developed as a procedural learning and standardised theoretical learning approach in Mathematics curriculum;
in order to achieve
E) proficiency in high level Mathematics, with a minimum 80% percent success rate for any individual who completes the course;
and the completion of the course will result in
F) retention of the knowledge obtained by any individual, with the requirement for only revision to recommence studies or the use of the acquired new numerical and mathematics skills;
and with successful retention of the knowledge by individuals
G) this would be confirmed as the correct curriculum procedure of obtaining the proficiency skill level requirements and learning of numerical systems, number theory and all mathematics subjects.
A) aumentar las capacidades individuales para alcanzar la competencia requerida para lograr una comprensión integral de todos los temas matemáticos;
por medio de
B) desarrollar un curso integral de sistema numérico procedimental y teoría de números que se utiliza en el campo de los números, las matemáticas y la métrica en la actualidad;
y
C) el sistema desarrollado se aplicará a todos los temas de matemáticas para demostrar su enfoque corregido de las matemáticas;
y
D) el sistema y el currículo deben desarrollarse como un aprendizaje procedimental y un enfoque de aprendizaje teórico estandarizado en el currículo de Matemáticas;
con el fin de lograr
E) dominio de Matemáticas de alto nivel, con una tasa de éxito mínima del 80% para cualquier individuo que complete el curso;
y la finalización del curso dará como resultado
F) retención de los conocimientos adquiridos por cualquier individuo, con el requisito de sólo revisión para reiniciar los estudios o el uso de las nuevas habilidades numéricas y matemáticas adquiridas;
y con retención exitosa del conocimiento por parte de los individuos.
G) esto se confirmaría como el procedimiento curricular correcto para obtener los requisitos del nivel de competencia y el aprendizaje de sistemas numéricos, teoría de números y todas las materias de matemáticas.
___________________________________________________________________________________________

Los siguientes son algunos breves comentarios sobre los beneficios identificados y probables de la Función Cognitiva para el ser humano que completa o aprende un sistema integral de educación numérica procedimental como este.(Edited)Restore original
The following are some brief comments about the identified and probable Cognitive Function benefits for the human who completes or learns an comprehensive procedural numerical education system as this one.
Ιt was determined halfway year two in the project 2020 but this procedural education system may have a Cognitive Reasoning benefit for people with low IQ because or disability.
What was strategised and envisioned in the second year of the research project was to reconstruct human procedural learning processing and thought processes for learning and using number systems, with consideration to Human Cognitive functions.
This assumption and strategy opened an future applicable science to Cognitive Reasoning development made possible by a perfect procedural process – and the assumption was that standardised procedures will allow the numerical system to be learned with minimal difficulty by the human or the individual – and if this was true, then the procedural system would be correct
The current education methodology used in education today as discussed above, comprises a brief introduction to Arithmetic Theory and then immediately jumping between topics of numbers and formulas and equations contained in mathematical topics which results in the low estimated 30 percent success rate.
Without procedure in place, and the attempt to learn a volume of knowledge that’s not organised and not procedural,
the Human Brain cognitively is not be able to comprehend such variation in complex numerical and mathematics topics, but if you give the brain of the human procedures and a foundation of procedures it then automatically will achieve the understanding of the volume of knowledge of topic, for example
like counting one to ten, this is a sequential standardised procedure in counting quantities, which we can confirm children can learn and people with lower IQs and disability are currently achieving. This understanding and fact also confirms that a procedure of learning mathematics will result in a higher success rate.
Se determinó a mitad del segundo año del proyecto 2020 que este sistema educativo procedimental puede tener un beneficio de razonamiento cognitivo para personas con bajo coeficiente intelectual debido a una discapacidad.
Lo que se planeó y se imaginó en el segundo año del proyecto de investigación fue reconstruir el procesamiento de aprendizaje procedimental humano y los procesos de pensamiento para aprender y usar sistemas numéricos, teniendo en cuenta las funciones cognitivas humanas.
Esta suposición y estrategia abrieron una futura ciencia aplicable al desarrollo del Razonamiento Cognitivo hecho posible por un proceso procedimental perfecto – y la suposición era que los procedimientos estandarizados permitirán que el ser humano o el individuo aprendan el sistema numérico con mínima dificultad – y si esto fuera cierto, entonces el sistema procesal sería correcto
La metodología educativa actual utilizada en la educación actual, como se discutió anteriormente, comprende una breve introducción a la teoría aritmética y luego salta inmediatamente entre temas de números, fórmulas y ecuaciones contenidas en temas matemáticos, lo que resulta en una baja tasa de éxito estimada del 30 por ciento.
Sin un procedimiento establecido y el intento de aprender un volumen de conocimiento que no está organizado ni es procedimental,
El cerebro humano cognitivamente no es capaz de comprender tal variación en temas numéricos y matemáticos complejos, pero si se le dan al cerebro del humano procedimientos y una base de procedimientos, automáticamente logrará la comprensión del volumen de conocimiento del tema, por ejemplo. ejemplo
Al igual que contar del uno al diez, este es un procedimiento secuencial estandarizado para contar cantidades, que podemos confirmar que los niños pueden aprender y que las personas con coeficientes intelectuales más bajos y discapacidades lo están logrando actualmente. Esta comprensión y este hecho también confirman que un procedimiento de aprendizaje de matemáticas dará como resultado una mayor tasa de éxito.
Cognitive Reasoning Development to be Achieved
The byproduct of this methodological process of learning this numerical system – is that it has a cognitive functionality approach and neuro learning biological consideration when it was being developed – with the primary reason and objective to increase the probability of learning success for the individual, and the perpetual retention of the skills and knowledge acquired.
In the future – we will invest in further research and development with the objective of confirming that this numerical system methodological approach results in biological cognitive improvement for an individual with a lower possibility of success, disability or below average IQ.
We are excited about this next endeavor.
Learn more about this research and development initiative: https://kokontis.wordpress.com/research/
Statistics Sampling and Surveys
We will be running a statistics sampling project, both quantitative and qualitative to continue to confirm the success rate.
Como resultado de este hallazgo preliminar:
Se desarrollará un segundo proyecto con el objetivo de demostrar que el sistema numérico procedimental desarrollado es una ciencia y un sistema aplicable para ayudar al desarrollo del razonamiento cognitivo y del coeficiente intelectual del individuo.
Este hallazgo se considera una recompensa si se convierte en una ciencia aplicable al desarrollo del razonamiento cognitivo humano.
As a result of this preliminary finding:
A second project will be developed with the objective to prove that the procedural numerical system developed is an applicable science and system to assist and individual’s Cognitive Reasoning Development and IQ development.
This finding is considered as the reward should it become and applicable science in human Cognitive Reasoning development.
Audio Presentation: Developed and Advanced Theoretical Methods in learning Numerical Systems and Mathematics
English Language Audio Presentation
An audio introduction by Athanasios Kokontis to the developed prerequisite course and curriculum program – Developed and Advanced Theoretical Methods in learning Numerical Systems and Mathematics

Research and Development Programs and Initiatives 2023 -2027
Students and Professionals Participating in New Technologies and Sciences
In this current Fourth Industrial Revolution of the information, communications and digital economy – in order to increase the prospects and chance of success and for all age groups to achieve science qualifications and advanced mathematic dependent careers it was found that it would be a priority to improve and develop correct methodologies for teaching the curriculum of Numerical Systems, Number Systems and subsequently apply these developed methodologies to Mathematics topics.
Athanasios Kokontis estimated – through personal curriculum experience and theoretical mathematics curriculum whilst at University – at its present form of curriculum course learning methodology and theoretical structure there is a 30% percent chance of success rate in an individual achieving prerequisite high level mathematics skills to enter University or College or advanced mathematics dependent careers.
Athanasios Kokontis in the second year – of this research and development project, in 2020, had confirmed estimation and findings – that this advanced Numerical System curriculum and the applied Learning Procedures increases the success rate of achieving a high level skill of mathematics to 80% percent – the remainder 20% is commitment from the individual to the course for a period of 12 months.

Science and Engineering Careers as an Achievable Option
The correct procedural learning and methods in numerical systems developed by Athanasios Kokontis would ensure students and professionals successful learning and adoption of the subjects required in academics of Arithmetic Theory, Number Theory, Geometry and Spacial Theory and Mathematics topics – thus increasing the people available to move into science, engineering and advanced mathematics dependent careers.
The research and development of the methodologies which comprise the new curriculum program is now completed – after three years of work by Athanasios Kokontis.
The Academic Curriculum
In the near future this will be published in a five volume mathematics course with the objective of the volumes being implemented as a pre-requisite course to commencing Arithmetic Theory and Mathematics topics in Secondary School, College and University courses.

Quantitative, Qualitative Curriculum, and Technological Challenges for Higher Education
Athanasios Kokontis looked at research studies which identified the most prominent quantitative, qualitative curriculum, and technological challenges facing the higher education system across the developed and developing world with regards to the information and communications technological advancements that had a significant contribution to changing the knowledge of science and knowledge in various fields of higher education.
The most compelling papers illustrate and confirm todays human societies require the adoption of scientific research and its fundamentals as an clear entrance aimed at serving the community and upskilling people skills to meet todays technological advancements and the conditional skill requirements of the new digital industrial equipment, electronic transaction and ecommerce systems, information and communication technology companies skilled staffing requirements.
It is noted that the number of private and public universities has increased, and many students have been accepted for all levels of study in the bachelor’s, higher diploma, master’s and doctoral programs, and the quantitative growth has been accompanied by many negatives, which requires renewal and development in the field of higher education, this led to new challenges, and the qualitative challenge in terms of curriculum relevance, an quality importance requirement for the improvement of teaching, scientific research and education services are required to meet the social demand for higher education, in order to reach the quality of this information and communications age.
The real challenge presenting all countries today is the need to enter the civilisation of advanced technology, which has become the main factor and the starting point for preparing staff capable of accomplishing this upskilling and creating an appropriate educational environment for the student to help him to use the sources of knowledge.
The Numerical and Procedural System in Mathematics developed by Athanasios Kokontis addresses the core prerequisite mathematics requirement in to such technologies and thus with this developed curriculum provide a set of recommendations and proposals that may contribute to addressing challenges and contributing to improving educational outcomes in light of the requirements of the labor market and the needs of society.
By Athanasios Kokontis – Sydney, Australia – © 2019 – 2023 Athanasios Kokontis All Copyrights Reserved
| Owner, researcher and producer of Kokontis products, education and training programs in Number Theory, Numerical Systems and Applied Mathematics: | Athanasios Kokontis |
| Trademark and Copyright owner: | ATHANASIOS KOKONTIS |
| Proprietary owner: | ATHANASIOS KOKONTIS KOKONTIS A.B,N 37 886 734500 |
| LinkedIn Professional Account | LinkedIn Professionals – Account URL: https://www.linkedin.com/in/athanasios-kokontis-47a63923/ |
| ResearchGate ResearchGate DOI: | URL: https://www.researchgate.net/profile/Athanasios-Kokontis 10.13140/RG.2.2.17274.91843 |
| Contact Telephone: | Australia (+61) 0455 167 018 |
| Email address: | athanasios.kokontis@kokontis.com.au |
Professional and Practitioners
Industry Training Enquiries
Kokontis Introduction
Registered Training Organisations
Australia and International Customers can contact Customer Service: courses@kokontis.com.au
Contact Us for use, publishing or reproduction of any of our Copyright or Intellectual Property: courses@kokontis.com.au

| Business Name: Kokontis and Australian Business Number: | (ABN): 37 886 734500 |
| Course and Training enquiries Call or +61 2 (outside Australia)Make a enquiry | Email courses@kokontis.com.au for course enquiries. |
| Make an international enquiry | Online international student chat | Copyright kokontis.com.au 2024Kokontis.courses websites© Copyright kokontis.courses 2024 |
| All 2019 – 2024 © Copyrights Reserve Registered Intellectual Property (IP) | Copyright Kokontis 2019 – 2024Kokontis.com.au websites© |
| All 2019 – 2024 © Copyrights Reserve Registered Intellectual Property (IP)© | Copyright Kokontis 2019 – 2024Kokontis.com.au websites© |

You must be logged in to post a comment.